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3

-communicating
-interacting
-publishing news
-sharing ressouces
-exchange messages 
-commenting statuses
-creating profiles through these platforms

Web 2.0
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Tweets/queries representation

Information retrieval process 

Microblog ranking

Microblog retrieval 
Query

expansion
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Microblogs specificities :

-Short messages with limited characters (up to 280 characters in Twitter)

-Specific syntax (@mention, #hashtag, RT…)

-May contain URLs

-Quality of language ( poor syntax: misspelled terms, abbreviations,…)

All of these specificities of microblogs introduce new challenges !
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Short text representation

Keywords-based representation Semantic-based representation

External knowledge-based
representation

Learning-based Representation
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Keywords-based representation

Polysemy and lexical ambiguity problems!

•BoW [Bansal& al., 2015] [Ferguson & al., 2012] [Lin & al., 2012] 

-High dimensional feature vector

-Term ordering is not considered

-Cannot capture semantics

- Ignores relationships between words .
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Semantic-based representation

External knowledge-based
representation

Learning-based Representation

• Knowledge Base (DBpedia)

[Fahd &al., 2016] [zingla &al., 2018]

-Focus on concept similarity rather then senses

-Penalize synonymous relationships that co-

occur for the same object

•Word embeddings (word2vec)

[Moumit&al.,2017] [Roy &al.,2016]

-Do not solve the problem of polysemous words

-The sub-linear relationships are not defined

-Large features dimension
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• Microblog retrieval ( Matching)

Classical models (BM25, Boolean)

 Based on factors such as the frequency of terms in documents: ineffective with short

text [Choi &al, 2012] [Damak&al., 2014]

Based on exact term matching

Originally designed for long text

 No longer adapted to the specificities of the new form of content in microblogs

Vocabulary mismatch [Damak&al.,2013]

 Conciseness of microblogs

Total absence of the terms of queries

Named entities recognition

Abbreviations written in different ways
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Textual Relevance

• Only textual content [Che Alhadi&al., 2011]

Relavance

Which social  factor is more effective to improve relevance? 

Social Relevance

•Incorporating social factors in the relevance
score :
[Patel&al.2017] [Ben Jabeur&al., 2012]

-freshness

-number of followers

-popularity of the author

-number of retweets
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Factors RLV-degree

Number of followers -

Freshness of the tweet +

The popularity of the author +

Number of retweet -

Presence of hashtags -

Number of mentions -

Length of the tweet -

Exact match of terms +

Presence of URLs in the tweet +

Language quality +

Number of replies in the tweet -

Popularity of the tweet +

Table 1: Relevance factors [Damak&al.,2013]
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The goal of this thesis is to:

• Improve the quality of results of information retrieval in microblogs.

• Advance the state-of-the-art works by proposing new solutions to the short text

representation and ranking problems :

-Estimate more accurate representations of tweets and queries

-Re-ranking tweets to retrieve high-quality content from microblogs
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Figure 1: Social information retrieval process

Tweet Collection
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Tweet Classification approaches

•Machine learning algorithms: decision trees ,

SVM , Naive Bayes

-Large training dataset to train classifier

-If the predefined categories changed: new set

of training

-The classification can only be as correct as the

labeling of the training set

•Knowledge bases

-DBpedia

-Freebase

•Word embedding

-word2vec

Classifier training is required in all classification methods !

Learning approaches Semantic orientation approaches
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• A deep enrichment strategy is applied to enrich text tweets with additional

semantic concepts from different Knowledge bases (e.g. DBpedia)

• A hard Word Sense Disambiguation process that uses a new disambiguation

algorithms based on Specification Marks method

• A knowledge-based categorizer called eXtended WordNet Domain

 A supervised categorization which relies only on the ontological knowledge

and classifier training is not required.
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Named Entity Recognition, Linking and Expansion

Text
Pre-processing

NE Recognition NE Linking NE Expansion
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Figure 2: Model of the semantic approach for tweet categorization

Word Sense Disambiguation
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The semantic approach for tweet categorization can be summarised as follows:

Let  
D = {D1, D2, ..., Dn}

be the set of XWND
Let

C = {c1, c2, ..., cm}

be the set of synonymous concepts aggregated in WordNet (synsets)

Now, let Wi be a word and let

Sense(wi) = {ci|ci ∈ C}      (sense disambiguated )

with Ci being a sense for Wi

Let
T = {w1,w2, ..., ws}

be the whole words in the tweet.



Semantic approach for tweet categorization
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Then, for each sense of word in the tweet Sense (wi) , we consider only the domain

with the highest PageRank weight.

XWND assigns a score to each pre-defined domain annotated score (wi, Dj)

The domain relevance function D* for a word has the following definition:

Finally, the tweet is then assigned a label corresponding to the topic (domain)
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Tweet collection which covers 1330 tweets collected via Twitter search API.

Limited to a six specific topics: Sports, Business, Technology, Entertainment, Politics

and Education.

Only English tweets are included in this evaluation
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Features Accuracy Recall Precision F-measure Error Rate

Our approach 91.29% 88.25% 88.79% 88.52% 8.71%

BoE+concepts 87.09% 59.18% 60.96% 60.06% 12.91%

BoS 86.39% 59.79% 59.36% 59.57% 13.61%

BoE+synsets 83.99% 50.17% 51.23% 50.69% 16.01%

BoW 83.61% 50.83% 50.61% 50.72% 16.39%

BoE 81.21% 15.05% 10.54% 8.27% 19.79%

Table 2: Results of tweet categorization
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Table 2: Results of tweet categorization

Pre-processing

Retrieving &Ranking

Tweet/ Query  deep enrichment
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Microblog  
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WordNet

Domain

Knowledge 
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Ranking tweets by quality

Domain-Indexing

Figure 3: Retrieval model based on domain-specific indexing
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Data Collection

• Database from TREC’11 microblog track

• The database consists of 16 million tweets and  49 topics
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Run P@5 P@10 P@20 P@30

run-DSI 0.3054 0.3121 0.2972 0.2841

run-KWI - 0.1288 0.1338 0.1321 0.1293

Table 4: Results of retrieval model based on domain-specific indexing



Traditional semantic representation problems
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Existing semantic based text representation methods depends on:

-Handcrafted features

-External information sources such as ontologies and knowledge bases

Time-consuming and hard hand-engineering

Need Machine Learning ?
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-External information sources such as ontologies and knowledge bases
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Deep learning-based short text representation
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Our improvements of short text representations:

 New neural architecture which combines recurrent neural network and feedforward

neural network

Hybrid Deep Neural Network (HDNN)    

 Incorporates character n-grams (FastText) for generating a contextual embedding

Uses a bi-directional LSTM

Deep contextualized word representation    

 Combines autoencoder with Elastic Net regularization for unsupervised features

selection and extraction.

Hybrid Regularized Autoencoder (HRA)



Hybrid Deep neural network-based representation
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Learning features from autoencoder
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Autoencoder is a type of neural network that applies back propagation to

reconstruct its input data.

Automatically learns features from unlabeled data by forcing the hidden

(encoding) layer to compress the data into a low-dimensional representation.



Hybrid regularized Autoencoder
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Figure 4 : Hybrid Regularized Autoencoder architecture



Deep Learning representation-based retrieval model
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Tweet  Contextualized  Word 
Representation
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Figure 5: Deep Learning representation-based retrieval model

Tweet Collection Pre- processing  
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Run P@5 P@10 P@20 P@30 MAP

HDNN(ContxW+ HRE) 0.5817 0.5753 0.5541 0.5468 0.5323

ContxWR+AE 0,5291 0.5110 0.4967 0.4822 0.4708

ContxWR 0,4514 0.4429 0.4284 0.4137 0.4097

FastText 0.4005 0.3843 0.3671 0.3582 0.3454

Word2vec 0.3622 0.3501 0.3363 0.3285 0.3028

GloVe 0,3498 0.3261 0.3033 0.2985 0.2880

LSA 0.2840 0.2724 0.2586 0.2312 0.2059

TF-IDF 0.2086 0.1922 0.1861 0.1677 0.1505

BoW (baseline) 0.1838 0.1738 0.1621 0.1493 0.1234

Table 5:  Results of the retrieval process using different representation methods
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Model Type Model P@30

Our model HDNN 0.5468

Traditionnal BM25 (TF-IDF) 0.1293

QL-LM  (language model) 0.2067

INDRI-LM (language model) 0.2918

Query expansion LCE-QE   (Latent Concept) 0.4551

TM-QE (Text-Mining) 0.2918

Hybrid-QE 0.3197

PM-QE  (pattern mining) 0.1973

Learned representation SA-LM (Selection Attribute) 0.3356

Auto-LM (autoencoder) 0.1968

Table 6: Comparison with state-of-the-art models
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Most of the proposed ranking strategies :

• provides no guarantee that the most relevant tweets appear on top list

• based on machine learning algorithms that depend heavily on hand-crafted features (e.g.

the number of followers, number of hashtags,etc.),

 Feature engineering requiring a lot of time and efforts
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To filter the quality of relevant tweets, we propose:

A deep learning ranking approach based on k-means clustering to distinguish

high quality and low quality tweets

•The clustering algorithm is based on learning features from autoencoder and

hand-crafted features from tweets’ content and authors’ profiles.



Re-Ranking process
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Figure 6: Overall process of re-ranking tweets



Learning features from autoencoder
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Figure 7: Autoencoder neural network architecture
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Four types of hand-crafted features were used for distinguishing the tweet’s quality 

content:

• Structural features : tweet length, presence of  hashtags/named entities

• Well-formedness features : spelling / grammar check, number of repeated

characters

• Author profile features:  presence of author profile description

• Interaction and behavioral features: number of re-tweets/replies/ mentions



Ranking process
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After clustering, we rank tweets in each cluster by measuring the separation

distance between the data points and the cluster’s centroid using this formula:



Ranking process
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Figure 8: Feature ranking by information gain
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Run P@5 P@10 P@20 P@30 MAP MAP-
Gain

Cluster 1 (with LF) 0.2310 0.2267 0.2226 0.1968 0.1881 81%

Cluster 2 (with LF) 0.1288 0.1337 0.1371 0.1352 0.1108 7%

run- baseline 0.1288 0.1337 0.1321 0.1293 0.1034 -

Table 7: Ranking results based on k-means clustering with learned features
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Table 7: Ranking results based on k-means clustering without learned features

Run P@5 P@10 P@20 P@30 MAP MAP-Gain

Cluster 1 (without LF) 0.2145 0.2145 0.2059 0.1882 0.1510 46%

Cluster 2 (without LF) 0.1928 0.1928 0.1870 0.1611 0.1356 31%

run- baseline 0.1288 0.1337 0.1321 0.1293 0.1034 -
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The major contributions of this thesis are :

(1) We proposed a semantic approach for short text representation

It used as a specific domain-indexing technique to improve microblog retrieval

This new indexing technique achieve an improvement of 15% at P@30

compared to baseline (Keywords indexing)



Conclusion

46/39
17/06/2022 Ibtihel BEN LTAIFA

(2) We proposed a new representation learning technique which deploys a hybrid

neural network architectures:

• The combination of two neural network architectures strongly improves the

performance of learning models to extract high-quality features’

representations

• This technique achieve an improvement of 42% at P@30 compared to state of

the art representation techniques
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(3) The last contribution consists on a re-ranking approach which aim to retrieve

high-quality content from microblogs:

• The integration of the learned features can improve the quality of ranking

compared to the use of hand-crafted features only.

• The re-ranking approach achieve a gain of 81% at MAP compared to the reverse

chronological order ranking.
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